EEE 352A, Properties of Electronic Materials, Spring 2007

Homework 3

Due: Wednesday, February 7, in class

- 1. Problem 1.20 in Kasap (20 points).
- 2. Problem 1.22 in Kasap (20 points).
- 3. Problem 3.5 in Kasap (20 points).
- 4. (40 points) At temperature T, the probability for an atom to have energy in the small range [E, E+dE] is $f_E(E)dE$, where the probability density function $f_E(E)$ is given by the following Maxwell-Boltzmann distribution:

$$f_E(E) = \frac{2}{\sqrt{\pi}} (\frac{1}{kT})^{3/2} \sqrt{E} \exp(-\frac{E}{kT}).$$

The average energy of the atom is

$$\bar{E} \equiv \int_0^\infty E f_E(E) dE. \tag{1}$$

- Let E_0 be the most probable value of energy defined by $df_E(E)/dE|_{E=E_0}=0$. Find E_0 .
- Without evaluating any integral explicitly, use Eq. (1) to argue that \bar{E} is proportional to kT.
- Now evaluate the integral and find an explicit expression for \bar{E} in terms of kT.

(Hint: $\int_0^\infty x^{3/2} e^{-x} dx = 3\sqrt{\pi}/4$).