EEE 352A, Properties of Electronic Materials, Spring 2007

Homework 12

Due: Friday, April 27, in class

1. (20 points) Consider an n-type semiconductor of length L. Show that, under steady-state conditions

$$\Delta p_n(x) = \Delta p_{n0}(1 - x/L), \quad 0 \le x \le L$$

is the special-case solution of the minority-carrier diffusion equation that will result if (1) L is much smaller than the diffusion length so that all recombinationgeneration processes can be neglected, and (2) one employs the boundary condition $\Delta p_n(0) = \Delta p_{n0}$ and $\Delta p_n(L) = 0$.

- 2. (30 points) The earth is hit by a mysterious ray that momentarily wipes out all minority carriers. Majority carriers are unaffected. Initially in equilibrium and not affected by room light, a uniformly doped silicon wafer sitting on your desk is struck by the ray at time t = 0. The wafer doping is $N_a = 10^{16}/\text{cm}^3$, $\tau_n = 10^{-6}$ s, and T = 300K.
 - (a) What is Δn at $t = 0^+$?
 - (b) Do low-level injection conditions exist inside the wafer at $t = 0^+$? Explain.
 - (c) Starting from the appropriate differential equation, derive $\Delta n_p(t)$ for t > 0.
- 3. (25 points) A silicon wafer $(N_a = 10^{14}/\text{cm}^3, \tau_n = 10^{-6}\text{s}, \text{ and } T = 300\text{K})$ is first illuminated for a time $t >> \tau_n$ with light which generates $G_{L0} = 10^{16}$ electron-hole pairs per cm³ sec uniformly throughout the volume of the silicon. At time t = 0 the light intensity is reduced, making $G_L = G_{L0}/2$ for $t \ge 0$. Determine $\Delta n_p(t)$ for $t \ge 0$.
- 4. (25 points) A semi-infinite *p*-type bar defined for $0 \le x < \infty$ is illuminated with light which generates G_L electron-hole pairs per cm³-sec uniformly throughout the volume of the semiconductor. Simultaneously, carriers are extracted at x = 0, making $\Delta n_p = 0$ at x = 0. Assuming that a steady-state condition has been established and $\Delta n_p(x)$ is much much smaller than p_0 for all x, solve for $\Delta n_p(x)$.