EEE 352A, Properties of Electronic Materials, Spring 2007

Homework 11

Due: Wednesday, April 18, in class

- 1. Problem 5.10 in Kasap (30 points).
- 2. (30 points) Consider an n-type semiconductor. The probability that a donor level E_d is occupied by an electron is

$$f_d(E_d) = \frac{1}{1 + \frac{1}{2} \exp\left(\frac{E_d - E_F}{kT}\right)},$$

where k is the Boltzmann constant, T is the temperature, E_F is the Fermi energy. Assume low temperature so that $n \approx N_d^+$ holds. Using the general expression for n [Eq. (5.6)] and the formula for $f_d(E_d)$ above, show that the electron concentration in the conduction band n satisfies

$$n^2 + \frac{(n - N_d)N_c}{2\exp\left(\frac{\Delta E}{kT}\right)} = 0,$$

where $\Delta E = E_c - E_d$. Under what condition can the above equation be reduced to Eq. (5.19) in the textbook?

- 3. Problem 5.14 in Kasap (20 points).
- 4. Problem 5.21 in Kasap (20 points).