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We propose a nonlinear voter model to study the emergence of global consensus in opinion dynamics.
In our model, agent i agrees with one of binary opinions with the probability that is a power function of
the number of agents holding this opinion among agent i and its nearest neighbors, where an adjustable
parameter α controls the effect of herd behavior on consensus. We find that there exists an optimal
value of α leading to the fastest consensus for lattices, random graphs, small-world networks and scale-
free networks. Qualitative insights are obtained by examining the spatiotemporal evolution of the opinion
clusters.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Mutual agreement, or consensus, is a fundamental phenomenon
in social and natural systems. The dynamics of opinion sharing and
competing and the emergence of consensus have become an ac-
tive topic of recent research in statistical and nonlinear physics [1].
For example, a number of models have been proposed to address
how consensus can result from the evolution of two competing
opinions in a population, which include the voter model [2,3], the
majority rule model [4,5], the bounded-confidence model [6] and
the social impact model [7]. Due to the high relevance of complex
networks [8] to social and natural systems, opinion dynamics have
also been incorporated on networks [9–36] such as regular lattices,
random graphs [37], small-world networks [38] and scale-free net-
works [39].

Previous works have revealed phase transitions in opinion dy-
namics [9,10,13,15,16] and the emergence of global consensus [3,
5] where all agents share the same opinion. It has also been found
that both the network structures [12] and the opinion updating
strategies [14,17,18] can affect the time for reaching the final con-
sensus. In Ref. [40], Yang et al. combined the majority rule model
with probability p with the voter model with probability 1 − p
and then measure the resulting consensus times on scale-free net-
works. They found that the optimized ratio to minimize consen-
sus time is around p = 0.72. In Refs. [41–43], Yang et al. studied
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the effects of heterogeneous influence of individuals on the global
consensus. Each individual is assigned a weight that is propor-
tional to the power of its degree, where the power exponent α
is an adjustable parameter. Interestingly, it is found that there ex-
ists an optimal value of α leading to the shortest consensus time
for scale-free networks, random networks and small-world net-
works.

In the voter model, an agents follows the opinion of a ran-
domly selected neighboring agent. In the majority rule model, an
agent follows the local majority opinion. For the voter model and
the majority rule model, an agents absolutely follows one opinion.
However, in reality, there can be situations where an agent chooses
one opinion with a stochastic probability due to bounded rational-
ity. In this Letter, we propose a nonlinear voter model in which an
agent i selects one of binary opinions with the probability that is
proportional to the power of the number of agents carrying this
opinion among agent i and its nearest neighbors. The power ex-
ponent α is introduced to control selective probability. Our main
finding is that, there exists an optimal value of α for which the
convergent time for consensus is minimum. This phenomenon in-
dicates that, a suitable preference of the local majority opinion (not
following it absolutely) can greatly accelerate the convergence pro-
cess towards the final consensus.

2. Model

Our model is described as follows. For a given network of any
topology, each node represents an agent. Initially the two opinions
denoted by the values ±1 are randomly assigned to agents with
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Fig. 1. (Color online.) Order parameter η as a function of t for different values of α
on a 50 × 50 square lattice with periodic boundary conditions. Each data point is
obtained by averaging over 2000 different realizations.

equal probability. At each time step, agents synchronously update1

their opinions according to the following rule. Agent i will select
the opinion +1 with the probability

p+ = nα+
nα+ + nα−

, (1)

where n+ and n− are the number of agents holding the opin-
ion +1 and −1 among agent i and its nearest neighbors respec-
tively, and α is an adjustable parameter. Similarly, agent i selects
the opinion −1 with the probability p− = nα−/(nα+ + nα−), where
p− = 1 − p+ .

The parameter α characterizes the degree of herd effect on con-
sensus. For α > 0 (< 0), agent i has a larger probability to select
the local majority (minority) opinion. In the case of α = 0, agent i
randomly selects the opinion +1 or −1. For α = 1, our model co-
incides with the voter model. For α → ∞, agent i absolutely takes
the local majority opinion and our model is reduced to the model
proposed in Ref. [15].

3. Results and analysis

We first consider a square lattice with periodic boundary con-
ditions. Following Ref. [10], we define an order parameter η as

η = 1

N

∣∣∣∣∣

N∑

i=1

σi

∣∣∣∣∣, (2)

where σi is the value of node i’s opinion (+1 or −1) and N is
the total number of nodes of the network. In general, we have
0 � η � 1, and a large value of η indicates that one opinion in
the system dominates the other. If the two opinions are equally
probably, we have η = 0. When global consensus is achieved so
that there is only one opinion in the system, we have η = 1.

Fig. 1 shows the order parameter η as a function of the time
step t for different values of α. For α = 1, 1.1 and 2, η increases
from 0 to 1 with t . For α = 2.0, initially η increases faster than the
cases of α = 1.0 and α = 1.1. Nevertheless, the system converges
to the global consensus state faster for α = 1.1 than for α = 2.0.
Another feature in Fig. 1 is that, for α < 1, the time required to
converge to global consensus can be extremely long.

1 We have checked that the qualitative results do not change when asynchronous
update is used.
Fig. 2. Time to achieve consensus, Tc , as a function of α for different lattice size N .
The inset shows the optimal value of α, αopt , as a function of N . Each data point is
obtained by averaging over 2000 different realizations.

Why does the system become so difficult to reach consensus
for α < 1? According to the mean-field approximation, opinion dy-
namics in the preferential-selection model can be described as:

dρ+
dt

= ρα+ρ−
ρα+ + ρα−

− ρα−ρ+
ρα+ + ρα−

= ρα+(1 − ρ+)

ρα+ + (1 − ρ+)α
− ρ+(1 − ρ+)α

ρα+ + (1 − ρ+)α

= ρ+(1 − ρ+)

ρα+ + (1 − ρ+)α

[
ρα−1+ − (1 − ρ+)α−1], (3)

where ρ+ and ρ− are the fractions of agents holding the opin-
ion +1 and −1 in the total population, respectively. In the case
of α < 1, for ρ+ > 0.5 (< 0.5), dρ+/dt < 0 (> 0). This indicates a
negative feedback mechanism that prohibits the majority opinion
from spreading over the whole population.

We define the consensus time Tc as the time steps required to
reach the final consensus. Fig. 2 shows that Tc as a function of α
for different network size N . It can be seen that there exists an
optimal value of α, hereafter denoted by αopt , which results in the
shortest consensus time Tc . We have found that αopt decreases as
the network size N increases, as shown in the inset of Fig. 2.

To understand the process of convergence to consensus, we
study the evolution of opinion clusters. A opinion cluster is a con-
nected component (subgraph) fully occupied by nodes holding the
same opinion. Fig. 3 shows the number of opinion clusters Ncl and
the normalized size of the largest cluster S1 = Smax/N as a func-
tion of t for different values of α, where Smax is the size of the
largest cluster. We see that eventually Ncl decreases to 1 and S1
increases to 1 for large t . For small values of α, agents do not
select the local majority opinion with large probability, thus it be-
comes difficult for them to form large opinion clusters. For with
α = 1.0, at the beginning, Ncl decreases and S1 increases much
more slowly. For α = 2.0, initially Ncl decreases and S1 increases
more quickly than the cases of α = 1.0 and α = 1.1. However,
when there are only two or three opinion clusters remained in the
system, Ncl decreases and S1 increases very slowly for α = 2.0,
indicating that the merging of different clusters becomes difficult
for large values of α. In particular, for α → ∞, the system cannot
reach consensus in some cases. As shown in Fig. 4, two different
opinions can coexist forever when α → ∞. For moderate values
of α (α = 1.1), large opinion clusters can be formed more rapidly
than for low values of α (α = 1.0), and the their emergence is fa-
cilitated than the cases of larger values of α (e.g., α = 2.0) as well.
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Fig. 3. (Color online.) (a) The number of opinion clusters Ncl and (b) the normalized
size of the largest cluster S1 as a function of time t for different values of α on a
50 × 50 square lattice. Each data point is obtained by averaging over 2000 different
realizations.

Fig. 4. Illustration of the configuration for the coexistence of two opinions for
α → ∞.

Thus the convergence time becomes minimum for some moder-
ate value of α. It can also be noted that the evolution of S1 for
different values of α is similar to that of η (see Fig. 1).

To assess how different values of α affect the evolution of the
opinion clusters, we design a numerical procedure to investigate
the evolution of spatial patterns of opinion. Specifically, in the 50×
50 square lattice, initially we set a subregion of 30 × 30 at the
center where all agents have the opinion +1, but the other nodes
carry the opinion −1, as shown in Fig. 5. We see that for α <

1, e.g., α = 0.99, the boundary between the two opinion clusters
gradually become blurred and they tend to be well-mixed with
approximately equal densities. In this case, global consensus is less
likely due to the difficulty to form opinion clusters. For moderate
values of α, e.g., α = 1.1, the boundaries become irregular with
time but finally the +1 cluster vanishes. For high values of α, e.g.,
Fig. 5. Snapshots of opinion patterns on a 50 × 50 square lattice. Initially (t = 0),
we set a subregion of 30 × 30 at the center where all agents have the opinion +1
(white), but the other nodes carry the opinion −1 (black). Initially the fraction of
the opinion +1 is ρ+(0) = 9/25 = 0.36. (a) α = 0.95, ρ+(200) = 0.41, ρ+(500) =
0.4576, ρ+(700) = 0.474; (b) α = 1.1, ρ+(200) = 0.2712, ρ+(500) = 0.1276,
ρ+(700) = 0.0278; (c) α = 5, ρ+(200) = 0.3232, ρ+(500) = 0.2428, ρ+(700) =
0.1916.

Fig. 6. (Color online.) Convergent time Tc as a function of α for ER random graphs,
NW small-world networks and BA scale-free networks. The average connectivities
of ER, NW and BA networks are 4. The inset shows the value of αopt as a function
of the average connectivity 〈k〉 for the three types of networks. The network size
is N = 3000. Each data point is obtained by averaging over 100 different network
realizations with 20 runs for each realization.

α = 5.0, the boundaries are clear and the inside cluster shrinks but
at a speed lower than that for α = 1.1.

The existence of an optimal value of α for which global consen-
sus can be achieved rapidly is not restricted to the square-lattice
structure. In fact, we have observed a similar behavior for com-
plex networks including Erdös–Rényi random graphs (ER) [37],
Newman–Watts small-world networks (NW) [38] and Barabási–
Albert scale-free networks (BA) [39]. We also observe that, the
optimal value of α tends to increase with the average connectivity
〈k〉 (see the inset of Fig. 6). From Fig. 6, one can see that the topo-
logical structure affects the convergent time Tc . Among the three
complex networks, Tc for scale-free networks is shortest when 〈k〉
and α is fixed.
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4. Conclusion

In summary, we have proposed a nonlinear voter model to
study the convergence to global consensus on lattices and complex
networks. An agent i selects one of binary opinions with the prob-
ability that is proportional to the power of the number of agents
carrying this opinion among agent i and its nearest neighbors. The
power exponent α is introduced to govern selective probability. It
is found that there exists an optimal value of α leading to the
shortest convergent time. We have explained such phenomenon in
terms of the evolution of the opinion clusters. For too small values
of α, the formation of big opinion clusters is slow. For very high
values of α, the merging of different opinion clusters becomes dif-
ficult. Taken together, the shortest convergent time can be realized
at moderate values of α. Our results indicate that, the consensus
would be quickly reached if agents suitably follow the local major-
ity opinion.
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