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Abstract

In the analysis of chaotic time series, a standard technique is to reconstruct an image of the original dynamical system
using delay coordinates. If the original dynamical system has an attractor, then the correlation dimensionD2 of its image
in the reconstruction can be estimated using the Grassberger–Procaccia algorithm. The quality of the reconstruction can be
probed by measuring the length of the linear scaling region used in this estimation. In this paper we show that the quality is
constrained by both the embedding dimensionm and, more importantly, by the delay timeτ . For a given embedding dimension
and a finite time series, there exists a maximum allowed delay time beyond which the size of the scaling region is no longer
reliably discernible. We derive an upper bound for this maximum delay time. Numerical experiments on several model
chaotic time series support the theoretical argument. They also clearly indicate the different roles played by the embedding
dimension and the delay time in the reconstruction. As the embedding dimension is increased, it is necessary to reduce the
delay time substantially to guarantee a reliable estimate ofD2. Our results imply that it is the delay time itself, rather than
the total observation time(m − 1)τ , which plays the most critical role in the determination of the correlation dimension.
Copyright © 1998 Elsevier Science B.V.

1. Introduction

In many physical, chemical, engineering and bio-
logical experiments, the observations consist of one
or more time series. When the underlying dynamics
is chaotic, such a time series appears random, and it
is important to be able to correctly identify its deter-
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ministic origin. One way to distinguish a chaotic time
series from the output of a stochastic process is to
establish the existence of a finite number of effective
degrees of freedom. Estimating the dimensionality
of the underlying chaotic process is thus quite im-
portant. In this regard, the correlation dimensionD2,
one of the most often considered dimensions char-
acterizing the multifractal property of the underlying
chaotic set, has been extensively investigated since
Grassberger and Procaccia (GP) [1] first proposed
a computationally efficient algorithm to estimate it
from chaotic data. Specifically, one first reconstructs
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an equivalent dynamical system using the method
of delay-coordinates embedding [2,3]. One then es-
timates the correlation integralC(ε) for a range of
values of the distanceε and plots logC(ε) against
logε. By extracting the slope of this plot in an ap-
parently linear scaling region at a series of increasing
embedding dimensions, one obtains an estimate of
the correlation dimension. (See Section 2 for pre-
cise definitions of delay-coordinate embedding,C(ε),
and the fractal dimension spectrum.) We mention,
however, that if one is only interested in distinguish-
ing between deterministic chaos and random noise,
alternative methods exist which do not require the
computation of the correlation dimension [4,5].

There are two critical parameters involved in the
construction of delay-coordinate embedding and
the subsequent application of the GP algorithm: (1)
the embedding dimensionm, and (2) the time delay
τ . Regarding the embedding dimension, there are
general and rigorous results due to Takens [3] and
Sauer et al. [6] (see Section 2.1), but if the task is
just to compute the correlation dimension, Ding et
al. [7] pointed out that the correct value of the cor-
relation dimension can be obtained withm being the
smallest integer larger thanD2 provided that the data
are infinitely long and noiseless, although for finite
and noisy time series,m needs to be larger thanD2.
For the choice of the proper delay time, however,
one usually relies on empirical criteria. For a scalar
chaotic time seriesx(t), the basic idea is to choose
τ such that the coordinatesx(t) and x(t + τ) are
somewhat independent but not completely uncor-
related so that they can be treated as independent
coordinates in some reconstructed phase space. Ifτ

is too small,x(t) andx(t + τ) are too correlated to
serve as independent variables in the reconstructed
vector space. Ifτ is too large, then for a chaotic time
series,x(t) and x(t + τ) are uncorrelated as com-
pletely random variables and, hence, the underlying
deterministic dynamics may be lost. A very elabo-
rate procedure based on the information content of
the chaotic attractor was developed by Fraser and
Swinney [8]. A straightforward and computationally
simple criterion was suggested by Theiler [9]. Us-
ing this criterion, one computes the autocorrelation

function Ψ (τ) from the time seriesx(t), Ψ (τ) =
〈[x(t + τ) − x][x(t) − x]〉/〈[x(t) − x]2〉, wherex is
the averaged value ofx(t), and the average〈·〉 is with
respect to timet . Theiler suggested to selectτ such
that Ψ (τ) ≈ 1/e. Methods based on the correlation
integral were developed by Liebert and Schuster [10]
and by Kember and Fowler [11]. Buzug and Pfister
[12] also considered obtaining optimal delay time and
embedding dimension by analyzing both global and
local behaviors of chaotic attractors. More recently,
Rosenstein et al. [13] suggested a computationally
efficient procedure based on reconstruction expan-
sion for choosing the proper delay time. It should be
noted that these empirical procedures all yield similar
choice of proper delay times which work quite well
in practical applications.

In this paper we show that the effective linear scal-
ing region that can be used reliably for computingD2

is very sensitive to the choice of time delay used in
the reconstruction of the phase space. We develop in-
equalities relating the maximum allowed delay time
to quantities such as the embedding dimension, the
length of the time series, and some dynamical invari-
ants of the underlying chaotic process. Our results
show that, for a given embedding dimensionm, there
exists a maximum allowed delay timeτ above which
the computation ofD2 is no longer reliable. Our main
results are Eq. (12), which can be used to estimate
the size of the linear scaling region, and Eq. (13),
which gives an upper bound for the allowed delay
time. An important implication is that the delay time
plays a critical role in the determination of the cor-
relation dimension. As the embedding dimension is
increased, it is necessary to reduce the delay time sub-
stantially to guarantee a reliable estimate of the corre-
lation dimension. The quality of the delay-coordinate
reconstruction, as measured by the length of the lin-
ear scaling region, deteriorates more rapidly with in-
creasingτ (for fixed m) than it does for increasingm
(and fixedτ ). Thus, in computingD2, the roles played
by the delay time and the embedding dimension are
apparently not equally influential. This is contrary to
some speculation in the literature that the combina-
tion (m − 1)τ ≈ mτ , the so-called window size, is
the most critical parameter in chaotic data analysis.
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A brief account of part of the present work has been
published in [14].

The paper is organized as follows: In Section 2, we
review the fundaments of the delay-coordinate embed-
ding technique and the GP algorithm. In Section 3, we
present numerical results with the Hénon map which
indicate that the length of the linear scaling region in
the computation of the correlation dimension changes
dramatically as the delay time changes. In Section 4,
we derive our main results, Eqs. (12) and (13). In
Section 5, we check the validity of our theoretical re-
sults by using time series produced from both discrete
maps and continuous flows. In Section 6, we discuss
the effects of noise, the geometry of large time de-
lays, and the role ofτ , m, and the window sizemτ

with respect to the length of the linear scaling region.
Concluding remarks are in Section 7.

2. Review of the Grassberger–Procaccia algorithm

2.1. Re-embedding a scalar time series

Supposez(t) is a trajectory of thed-dimensional
dynamical system

dz
dt

= f (z) with z(t0) = z0. (1)

Let Φt : Rd −→ Rd be the flow of this system at
time t , and letg : Rd → R be an observable. If the
measuring process samplesg every T units of time
beginning att = t0, the observations corresponding
to the trajectory constitute a scalar time series{xn}
with

xn = x(t0 + nT ) = g(zn)

= g(z(t0 + nT )) = g(ΦnT (z0)). (2)

Let us now fixT and simply writeF for ΦT . This also
allows us to consider dynamical systems described by
discrete maps such as those arising on the Poincaré
surface of section of continuous flows.

The problem, given the scalar time series, is to
recover as much information as possible about the
original system without explicit knowledge of the

functionsg and F. The first step is to reconstruct a
dynamical system which is equivalent to the original.
Generically, this can be done using delay coordinates,
as was suggested by Packard et al. [2] and was shown
rigorously by Takens [3]. Specifically, given the setup
described above, for any positive integersm and τ ,
we can define a mapH: Rd −→ Rm by

x = H(z) = (g(z), g(Fτ (z)), . . . , g(F(m−1)τ (z))).

(3)

In terms of the scalar time series, this reads

xn = H(zn) = (xn, xn+τ , . . . , xn+(m−1)τ ). (4)

In what follows, we shall refer toτ as the delay
time. For smooth dynamical systems, the true time lag
is τT . The fundamental theorem by Takens [3] states
that for almost allT and observablesg, if the motion
takes place in a compact region of phase space, and if
m ≥ 2d +1, whered is the dimension of the manifold
in which the attractor lies, thenH is one-to-one. Thus
generically,H embeds the original dynamical system
in Rm. So, if g andF are differentiable, so isH. This
means that any differential or topological invariants of
the original dynamical system can also be computed
from the reconstructed system inRm.

Since one is typically interested in the geometry
of an attractor whose dimension is less thand, and
the computational effort needed for dimension calcu-
lations increases with the embedding dimension, con-
siderable effort has been directed to minimizing the
embedding dimension required. Recently, Sauer et al.
[6] proved that an embedding of the attractor can be
obtained ifm ≥ 2D0+1, whereD0 is the box-counting
dimension of the attractor. Another important result in
this direction is due to Ding et al. [7]. They showed
that if a strict embedding is not required (i.e., if lower-
dimensional self-intersections of the attractor are per-
mitted), as in the case of computing the correlation
dimensionD2, then in the limiting case of noise-free,
infinite amount of data,D2 can be obtained with the
GP algorithm ifm is any integer larger thanD2. From
a practical point of view, these theoretical results are
somewhat tempered by finite sample sizes, sampling



4 Y.-C. Lai, D. Lerner / Physica D 115 (1998) 1–18

rates which are far from ideal, numerical errors, and
noise.

2.2. The correlation dimensionD2

In many dissipative dynamical systems, the asymp-
totic set is often a chaotic attractor. The dimensions of
this attractor, which are often fractional, are topologi-
cal invariants. An accurate estimate of the dimension
of the attractor is a primary step towards understand-
ing the underlying dynamical system.

An often computed dimension in chaotic time se-
ries analysis is the correlation dimensionD2 which
is one of the infinite number of dimensions in the di-
mension spectrum that characterizes the multifractal
structure of the chaotic attractor [15,16]. Grassberger
and Procaccia [1] showed in 1983 thatD2 can be eval-
uated using the correlation integralC(ε), which is de-
fined to be the probability that a pair of points chosen
randomly with respect to the natural measure is sep-
arated by a distance less thanε on the attractor . For
a trajectory of lengthN in the embedding spaceRm,
the correlation integral can be approximated by the
sum:

CN(ε) = 2

N(N − 1)

N∑
j=1

N∑
i=j+1

Θ(ε − |xi − xj |),

(5)

whereΘ(·) is the Heaviside function given byΘ(x) =
1 forx ≥ 0 and 0 otherwise, and the norm is defined by

|x| = max{|xi |: 1 ≤ i ≤ m}.
For N large, we haveCN(ε) ≈ C(ε). Grassberger
and Procaccia argued that the correlation dimension
D2 is given by

D2 = lim
ε→0

lim
N→∞

logCN(ε)

logε
. (6)

In practice, for a time series of finite length, the sum
in Eq. (5) also depends on the delay timeτ and the em-
bedding dimensionm. Thus, for the rest of the paper
we shall denote the correlation sum byCN(ε, τ, m).
Due to such dependencies, the correlation dimension
D2 is usually estimated by examining the slope of

the linear portion of the plot of logCN(ε, τ, m) ver-
sus logε for a series of increasing values of m. For
m < D2, the dimension of the reconstructed phase
space is not high enough to resolve the structure of
the attractor and, hence, in this case the slope approx-
imates the embedding dimension. Asm increases, the
resolution of the attractor in the reconstructed phase
space improves. Typically, the slope in the plot of
logCN(ε, τ, m) versus logε increases withm until
it reaches a plateau; its value at the plateau is then
taken as the estimate ofD2 [1,7,17,18]. For an infi-
nite and noiseless time series, the value ofm at which
this plateau begins satisfiesm = Ceil(D2), where
Ceil(D2) is the smallest integer greater than or equal
to D2 [7]. On the other hand, short data sets and ob-
servational noise can cause the plateau onset to oc-
cur at a value ofm which is considerably larger than
Ceil(D2). Even so, the embedding dimension at which
the plateau is reached still provides a reasonably sharp
upper bound for the true correlation dimensionD2.
Systematic examination of the dependencies of the
length of the linear scaling region on fundamental pa-
rametersτ , m, andmτ is the main goal of this paper.

3. Numerical results for the Hénon map

In this section, we present extensive numeri-
cal results on the behavior of the correlation sum
CN(ε, τ, m) for the H́enon map [19],

xn+1 = a − x2
n + byn,

yn+1 = xn,
(7)

with a = 1.4 andb = 0.3. For this map,D2 ≈ 1.195,
so for a sufficiently long time series, the correct value
of D2 can be extracted using an embedding dimen-
sionm = 2 [7]. To generate a time series, we choose
a random initial condition, iterate the map 2000 times
to get rid of the initial transient, and then record the
next 28 000 values ofxn. To compare results at vari-
ous embedding dimensions, we normalize the result-
ing time series viax̂n = (xn − xmin)/(xmax − xmin)

so that 0≤ xn ≤ 1, ∀n. With the norm|x − y| =
max(|xi − yi |: 1 ≤ i ≤ m), for vectorsx and y in

the reconstructed phase space, the maximum distance
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Fig. 1. For a time series of lengthN = 28 000 from the H́enon map ata = 1.4 andb = 0.3, log2 CN(ε, τ, m) versus log2 ε for m = 2
(a), 4 (b), 8 (c), and 12 (d). In each figure, there are 20 plots corresponding to values of the delay timeτ ranging from 1 to 20.

between any pair of points is 1. The correlation sum
CN(ε, τ, m) is evaluated at 200 values ofε for log2 ε ∈
[−20, 0] and for embedding dimensions ranging from
m = 2 tom = 12. For each embedding dimension, the
computation is performed with a delay time ranging
from τ = 1 to τ = 20.

Figs. 1(a)–(d) show log2 CN(ε, τ, m) versus log2 ε

for m = 2, 4, 8, 12, respectively, where in each
figure, the curves correspond toτ = 1 to τ = 20.

Figs. 2(a)–(d) show log2 CN(ε, τ, m) versus log2 ε for
τ = 1, 2, 4 and 8, respectively, where the curves in
each figure correspond to embedding dimensions from
m = 2 to m = 12. From these figures, we observe the
following:
1. For the range of embedding dimensions studied,

the plot of the correlation integral atτ = 1 yields
the largest linear scaling region. The slope of the
fitted straight line gives the correct value ofD2.
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Fig. 2. For the same time series as in Fig. 1, log2 CN(ε, τ, m) versus log2 ε for τ = 1 (a), 2 (b), 4 (c) and 8 (d). In each figure,
there are 11 plots corresponding to embedding dimensions ranging from 2 to 12.

2. For a fixed embedding dimension, the linear scal-
ing region decreases with increasing values ofτ

(Figs. 1(a)–(d)). For instance, whenm = 8, there
is no good scaling region ifτ ≥ 4. This indicates
that if τ is too large, the GP algorithm no longer
yields a valid estimation of the correlation dimen-
sionD2.

3. For small values ofτ , while there exists a linear
scaling region leading to the correct value ofD2,

as ε increases there is a crossover from the good
scaling region to a straight line whose slope is
equal to the embedding dimension.

4. For a fixed delay time, the linear scaling region
decreases as the embedding dimensionm is in-
creased (Figs. 2(a)–(d)). However, there is no ap-
parent crossover. This can be best seen in Fig. 2(a),
whereτ = 1, and the sizable linear scaling region
appears to persist asm is increased from 1 to 12.
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These observations suggest the following:
1. The range of the linear scaling region from which

D2 can be correctly extracted depends on bothτ

and m, more sensitively onτ , indicating that the
roles of τ and m in determining the linear scal-
ing region are different. Thus, utilizing the win-
dow sizew ≡ (m − 1)τ to characterize the quality
of the delay-coordinate embedding analysis is not
sufficient.

2. As the embedding dimensionm is increased, the
delay timeτ should be decreased to ensure a sizable
linear scaling region.
In the sequel, we present an analysis to account for

the above numerical observations.

4. Estimating the size of the linear scaling region

Our task is to establish conservative upper and lower
bounds for the linear scaling region in terms of logε.
This will then permit us to fix an upper limit for the
delay timeτ at fixed embedding dimensionm and
fixed number of data pointsN .

Inside the scaling region, the plots of logCN

(ε, τ, m) against logε give a family of parallel lines
with slopeD2; the vertical intercept varies with the
precise values ofm and τ . For simple dynamical
systems which can be solved analytically, this can be
seen from the explicit expression ofCN(ε, τ, m). For
instance, for the tent map (D2 = 1), for ε near 0 we
find (see Appendix A)

log2 C(ε, τ, m) = log2 ε − mτ + τ + 1. (8)

For more general dynamical systems, Grassberger and
Procaccia [20] derived the following relation:

log2 CN(ε, τ, m) ≈ D2 log2 ε − mτT K2 log2 e, (9)

whereK2 is the order-2 entropy. Equivalently, from
Eq. (9), if J is the number of distinct pairs of points
on the attractor which are less thanε units apart, then
in the scaling region, we have

J ≈ 1
2N2εD2e−mτT K2.

Imposing the modest requirement thatJ be > 1
throughout the linear scaling region, we obtain a

constraint which, when solved forε, establishes the
lower bound of the region as

1 − 2 log2 N + τmT K2 log e

D2
< log2 εmin(τ, m).

(10)

Note that εmin(τ, m) is an increasing function of
both its arguments, and the values ofτ andm affect
εmin(τ, m) equally.

Next, we considerεmax(τ, m), which determines the
upper end point of the linear scaling region. For large
values ofτ , the different delay coordinates are essen-
tially uncorrelated. Consequently, at large distances
ε, the behavior ofCN(ε, τ, m) is similar to that ob-
tained from a sequence of random vectors in them-
dimensional embedding space. Thus, we expect the
family of curves to have a straight line with slopem as
its envelope. This behavior is indeed observed in nu-
merical computations (Figs. 1(a)–(d)). The line given
by Eq. (9) intersects the line of slopem through the
origin at a value ofε which satisfies

D2 log2 ε − mτT K2 log2 e = m log2 ε.

Taking this for the upper bound of the scaling region
gives

log2 εmax <
−mτT K2 log2 e

m − D2
. (11)

Using Eqs. (10) and (11), and letting∆ represent the
size of the linear scaling region, we find

∆ = log2 εmax(τ, m) − log2 εmin(τ, m)

< −mK2τT log2 e

m − D2

+ 2 log2 N − 1 − mτT K2 log2 e

D2
. (12)

Note that from Eq. (12), the effects ofm and τ

on εmax(τ, m) are apparently different due to the ap-
pearance ofm in the denominator. Thus, although
εmin(τ, m) depends equally onm andτ , the size of the
linear scaling region changes in a distinctly different
manner asm or τ changes. This observation gives a
qualitative explanation to Figs. 1 and 2. As a practical
matter, in order to estimateD2, the linear scaling re-
gion must span at least an order of magnitude inε. In
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terms of the base-2 logarithmic scale, we shall require
that∆ ≥ 4. This is a simple, easily checked test of the
quality of the reconstruction using delay coordinates.
Now we can solve Eq. (12) forτ to obtain an upper
bound for the delay time:

τmax <
(2 log2 N − 1 − 4D2)(m − D2)

m2K2T log2 e
. (13)

Although our main interest lies in Eqs. (12) and
(13), we can also solve (12) to obtain an upper bound
for the embedding dimensionm:

mmax <
β +

√
β2 + 16αD2

2α
, (14)

where

α = K2τT log2(e),

and

β = 2 log2(N) − 1 + (α − 4)D2. (15)

5. Numerical confirmation of the length of the
linear scaling region and the upper bound for
the time delay

To check the validity of Eqs. (12) and (13), we ex-
amine low-dimensional discrete maps and flows for
which the quantitiesD2 andK2 can be obtained via
other avenues. In particular, the correlation dimen-
sion D2 can be calculated by using a box-counting
procedure [15]. For dynamical systems described by
one-dimensional or two-dimensional maps, the order-
2 entropy is the positive Lyapunov exponent [20].

5.1. Maps

For the H́enon map ata = 1.4 andb = 0.3, D2 ≈
1.195. Since there is just one positive Lyapunov ex-
ponent, we haveK2 = λ1 ≈ 0.42. For a time series
of N = 28 000 points, we obtain (T = 1),

τmax(m) < 39.22

(
m − D2

m2

)
. (16)

Selective results are shown in Figs. 1(a)–(d) and 2(a)–
(d). Clearly, for large values ofτ , delay coordinates

Fig. 3. Theoretical and numerical results for the upper bound
of the delay time at various embedding dimensions (a) for the
Hénon map, and (b) for the tent map.

are essentially independent of each other and, hence,
we see that the curves log2 CN(ε, τ, m) versus log2 ε

have a slopem for large values ofε. The curves fol-
low this envelope forε > εmax(τ, m) and then level
off to obey the asymptotic law log2 CN(ε, τ, m) ∼
D2 log2 ε − K2τT m log2 e. For m = 4, we have
τmax(4) ≈ 7 from Eq. (16), while numerical compu-
tation givesτmax(4) ≈ 8 (Fig. 1(b)). Form = 8, we
haveτmax(4) ≈ 4 from Eq. (16), and numerics gives
τmax(4) ≈ 4 (Fig. 1(c)). Fig. 3(a) shows both the the-
oretical prediction forτmax(m) and the corresponding
numerical results for embedding dimension ranging
from m = 3 to m = 12. The agreement between
Eq. (16) and the numerics is good.
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Fig. 4. For thex-measurement of the Lorenz equation (17), log2 CN(ε, τ, m) versus log2 ε for (a) m = 7 (fixed), τ = 1, . . . , 7, (b)
m = 10 (fixed), τ = 1, . . . , 6, and (c)τ = 1 (fixed), m = 3, . . . , 10. (d) Pointwise estimates ofD2: d log2 CN(ε, τ, m)/d log2 ε

versus log2 ε for τ = 1 (fixed), m = 3, . . . , 10.

Results with the tent map are summarized in
Fig. 3(b), where the theoretical and numerical
estimates ofτmax(m) are shown for embedding di-
mensions ranging fromm = 2 to m = 12. Again, a
good agreement is obtained.

5.2. Flows

As an example of a continuous dynamical system,
we consider the Lorenz equation [21]:

dx

dt
= −10(x − y),

dy

dt
= x(28− z) − y, (17)

dz

dt
= −8

3
z + xy.

After discarding an initial transient of 5000 points, an
orbit of 30 000 points on the attractor of (17) was com-
puted numerically. The individual points on the orbit
are separated in time byT = 0.3 (the time required for
the autocorrelation function of thex-coordinate of the
solution to (17) to decay to 1/e of its original value).
Integration between timest andt + T was done with
a standard adaptive RK5 routine.

Figs. 4(a) and (b) show the plots of log2 CN

(ε, τ, m) versus log2 ε for m = 7 (τ = 1, . . . , 7) and
m = 10 (τ = 1, . . . , 6), respectively. We see that for
fixedm, the size of the linear scaling regime decreases
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as τ increases. Figs. 4(c) and (d) show for fixed
τ = 1, the plots of log2 CN(ε, τ, m) versus log2 ε and
d log2 CN(ε, τ, m)/dε versus log2 ε, respectively, for
m = 3, . . . , 10. As in the case of maps, the length of
the linear scaling region is apparently more sensitive
to increase inτ than to increase inm (Figs. 4(a) and
(b) versus Fig. 4(c)).

To test the goodness of our theoretical prediction,
it is necessary to determine the relevant quantities
in Eq. (13). The approximately constant value of
d log2 CN(ε, τ, m)/dε in the sizable plateau region in
Fig. 4(d) givesD2 ≈ 2.04, while we haveK2 ≈ 1.1
estimated from−1/τ(d lnC/dm) as suggested in
[20]. SinceT = 0.3, the actual time delay is 0.3τ , for
some integerτ . In this case, Eq. (13) gives the results
τmax ≤ 4 whenm = 7 andτmax ≤ 3 whenm ≥ 9,
once again in good agreement with the experimental
results shown in Figs. 4(a) and (b).

Similar results were obtained for the Rössler system
and for the forced damped pendulum.

6. Noise, geometrical interpretation of large time
delays, window size, and the “knee” behavior

6.1. Effect of noise

When the time series is contaminated by noise,
structures on the attractor with scales less than the
noise amplitudeεnoise can no longer be resolved; for
ε ≤ εnoise, slopes in the plots log2 CN(ε, τ, m) versus
log2 ε keep increasing as the embedding dimensionm

is increased. The correct slopes (D2) can be extracted
only for ε > εnoise. Figs. 5(a) and (b) illustrate this
phenomenon for a noise contaminated time series of
N = 28 000 points from the H́enon map, which shows
plots of log2 CN(ε, τ, m) versus log2 ε for τ = 1 to
20 atm = 3 andm = 6, respectively. The time series
was generated by iterating the Hénon map with an ad-
ditive noise term 2−8σn, whereσn is a random vari-
able uniformly distributed in [0, 1]. After normalizing
the time series to the unit interval, the noise amplitude
becomes approximately 2−8/4 = 2−10. Clearly, there
is an abrupt change in each of the plots at log2 ε ≈
−10 for all τ values shown. The slopes of the plot for

Fig. 5. For a noise contaminated time series ofN = 28 000
points from the H́enon map, the plots of log2 CN(ε, τ, m) ver-
sus log2 ε for τ = 1 to 20 atm = 3. The noisy time series is
generated by iterating the Hénon map with an additive noise
term 2−8σn, where σn is a random number uniformly dis-
tributed in the [0, 1]. After normalization, the noise amplitude
is approximately 2−10. The effect of noise induces a crossover
from random to deterministic behavior at log2 ε ≈ −10.

log2 ε > −10 are still approximately the value ofD2,
in so far asτ is small enough.

The presence of noise can change the effective scal-
ing region in the computation ofD2. For givenτ and
m, if εnoise≤ εmin(τ, m), the scaling region, and hence
Eqs. (12) and (13) are unaffected. If, however,εnoise>
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εmin(τ, m), then the effective scaling region is given
by

∆ .
−mτT K2 log2 e

m − D2
− log2 εnoise. (18)

Requiring∆ & 4, we obtain

τmax(m) .
[log2 (1/εnoise) − 4](m − D2)

mK2T log2 e
. (19)

Clearly, if εnoise> εmax(τ, m), it is no longer possible
to computeD2. In fact, a stronger condition holds: if

log2(εnoise) & −
[
4 + mK2T log2 e

(m − D2)

]

(corresponding toτmax < 1), thenD2 can no longer
be reliably computed using the correlation integral.

6.2. Some geometrical considerations

The correlation integral is a spatial average; dis-
tances between pairs of points are computed without
regard to their temporal ordering. It is known [22] that,
in the case of flows, too short a delay time results in an
underestimate of the correlation dimension due to the
fact that pairs of points which are close in time domi-
nate the integral for small values ofε. For this reason,
it is important to chooseτ greater than someτmin at
which the temporal correlations become unimportant
[8,23–25].

Here we wish to point out that there is a straightfor-
ward geometrical explanation for the rapid disappear-
ance of the good scaling region for largeτ as well.
Consider the time-delay embeddings of the time series
from a one-dimensional mapxn+1 = f (xn) that pos-
sesses a chaotic attractor, for instance, so thatD2 =
1. Using values ofτ ≥ 1 is equivalent to examining
the τ th iterations of the map. Consider, say,m = 2.
For large values ofτ , the plot of f τ (xn) versusxn

is effectively two-dimensional due to the folds of the
map [26]. Thus, whenτ is large, one obtains the er-
roneous resultD2 = 2. This type of behavior is also
observable for embedding continuous flows. Generi-
cally, successive increments of the delay timeτ corre-
spond geometrically to successive iterations of a fixed
mapσ which depends only on the initial time delay.

In other words, the lack of correlation observed be-
tween the variablesxn andxn+kτ is due not only to
the fact that the data correspond to points that are far
apart on the original attractor. It is also, and primar-
ily, due to the fact that the extrinsic geometry of the
embedding map itself is a function ofτ , and becomes
considerably more complicated with increasingτ .

The above behavior can be summarized more for-
mally by factoring the mapH of Eq. (3) through an
intermediate copy of the original manifold on which
the dynamical system lives: LetF be a differentiable
dynamical system onRd or more generally on thed-
dimensional manifoldM. Let g: M → R be an ob-
servable, and suppose we embedM into Rm in the
manner previously discussed. Define

σ : M × M × · · · × M︸ ︷︷ ︸
m times

−→ Mm by

σ(z1, z2, . . . , zm) = (z1, F (z2), . . . , F
m−1(zm)).

(20)

Then σ τ (z1, z2, . . . , zm) = (z1, F
τ (z2), . . . ,

F τ(m−1)(zm)). We can embedM onto the diagonal
of Mm by sendingz ∈ M ↪→ ι(z) = (z, z, . . . , z).
Note thatσ ◦ ι (and henceστ ◦ ι) is a diffeomorphism
even if F is not. The observableg induces a map
ĝ : Mm → Rm via

ĝ(z1, z2, . . . , zm) = (g(z1), g(z2), . . . , g(zm)).

We can now express the mapH of Eq. (3) as the
composition of the three separate maps

Hτ (z) = (ĝ ◦ στ ◦ ι)(z)

= (g(z), g(F τ (z)), . . . , g(F (m−1)τ (z))). (21)

Recall that our scalar time series is assumed to
arise from a sequencezk = Fk(z0) ∈ M, so the
re-embedded trajectories are given by the sequences

{Hτ (zk); k = 0, 1, 2, . . .} ⊂ Rm.

We thus see that using the delay timeτ corresponds
precisely to computingτ iterations of the mapσ for
each of these points. The mapsι andĝ do not change
with τ , so all the observed computational effects re-
sult from this iterative process. Although we do not
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give a rigorous proof here, it is clear that the effect
of these compositions is to increase the complexity
of the embedding. For a fixed distanceε, increasing
τ increases the probability that any two points lie on
different folds of the attractor. It is this geometric ef-
fect which renders the computation ofD2 problematic
at largeτ . In particular, asτ increases, the value of
εmax must also decrease to be less than half the aver-
age distance between the folds. This is quite different
from the effect of increasing the embedding dimen-
sion while leavingτ fixed. Indeed, as is clear from
Figs. 2(a)–(d) and 4(c), the linear scaling region near
log2 εmax is only slightly affected whenm is increased
while τ is held fixed at small values.

6.3. The relation betweenτ and window sizew

For continuous dynamical systems, the quantity
w = (m − 1)τT is called the window size. Because
it represents the total time interval over which the
original trajectory must be observed to construct each
delay vector, it is often considered to be a more
fundamental quantity than eitherm or τ separately
[22,23,25].

From the standpoint of accurately determining the
correlation dimension however, it is not clear that the
quality of the reconstructed dynamics will depend in
a useful way on the window size. In fact, the scaling
region in Eq. (12) can be written as

∆ .
2 log2(N) − 1 − wK2 log2(e)

D2
− wK2 log2(e)

m − D2
,

(22)

wherew ≈ mτT has been used. For fixed window
size, this has the form

∆ .
A

D2
− B

m − D2
,

whereA and B are positive constants. This implies
that in order to increase∆, one should increase the
embedding dimensionm. Sincew is fixed, this means
that the delay timeτ should be decreased. This expec-
tation is borne out by Fig. 6, in which log–log plots
of correlation integrals versus distance are shown for
the Lorenzx-coordinate, using a fixed window size

Fig. 6. Correlation integrals for thex-measurement of the
Lorenz flow Eq. (17) at fixed windoww = (m − 1)τ = 24 but
different combinations ofτ andm. Clearly, for fixedw, larger
m and smallerτ yield larger linear scaling region.

of w = 24 for different admissible values ofm and
τ (five combinations ofm andτ ). The largest linear
scaling region clearly occurs form = 25 andτ = 1,
while for m = 5 andτ = 6, there is no apparent linear
scaling region. These considerations lend some sup-
port to the assertion that one should always choose
τ as close as possible toτmin (e.g., as thefirst min-
imum or zero of the autocorrelation function [23] or
the first minimum of the mutual information [8]). Al-
though our reasoning is somewhat different, this is in
agreement with the conclusions of Gibson et. al. [25].

6.4. “Knee” due to large time delay

It is known that time series either from stochastic
process or from deterministic chaotic process may ex-
hibit anomalous structures in the correlation integral
plots [27]. One example is the occurrence of a “knee”
where the plot of the correlation integral on a logarith-
mic scale exhibits distinct linear regions with different
slopes. Theiler [27] showed that in certain cases, this
anomalous behavior is caused by a high degree of cor-
relation among nearby data points in the time series,
and he proposed to ignore the contribution to the cor-
relation integral from nearby points in the embedding
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Fig. 7. For a time series lengthN = 40 000 from the H́enon map, log2 CN(ε, τ = 8, m = 4, W) versus log2 ε for W = 1 (a), 6 (b),
11 (c) and 16 (d). The relatively large delay timeτ = 8 used induces the “knee” behavior in the plot (a). Note that usingW > τ in
Eq. (23) does not eliminate the observed “knee” behavior.

space to remedy this behavior. Specifically, Theiler
suggested the following modified correlation integral
in the GP algorithm:

CN(ε, τ, m, W) = 2

N2

N∑
j=W

N−j∑
i=1

Θ(ε − |xi − xj |),

(23)

where W > 1 is an integer. It was demonstrated
that if W > τ , then the “knee” behavior in the cor-
relation integral can be eliminated and the resulting
integral would yield the correct value ofD2 [27].
Here, we point out that large time delays may also
cause the occurrence of “knee” in the correlation
integral. One case is illustrated in Fig. 7(a), where
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Fig. 8. For the same noise contaminated time series as in Fig. 7, log2 CN(ε, τ = 3, m = 4, W) versus log2 ε for W = 1 (a), 8 (b),
15 (c) and 20 (d). There are now three distinct regions in the plot, as described in the text. The slope in region II, the “knee” part,
gives a good approximation to the correlation dimensionD2.

log2 CN(ε, τ = 8, m = 4) versus log2 ε is plotted for
a noiseless time series ofN = 40 000 points from the
Hénon map. The “knee” behavior is not eliminated
by usingW > 1 in Eq. (23), as shown in Figs. 7(b)–
(d) for W = 6, 11, and 16, respectively, where we
notice thatW >τ in Figs. 7(c) and (d). The reason is
that the occurrence of this type of “knee” is mainly
due to the large delay time used, or equivalently, is

due to loss of the correlation between components
of points in the embedding space, in contrast to the
“knee” behavior discussed by Theiler [27] which
is due to the excessive correlation between nearby
points in the time series. The “knee” behavior due to
loss of correlation is particularly severe in the pres-
ence of small random noise. Fig. 8(a) shows a plot
of log2 CN(ε, τ, m) versus log2 ε for a time series
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from the H́enon map, whereN = 28 000, τ = 3,
m = 4, and there is random noise with amplitude
2−10 mixed with chaotic data. It is clear that the plot
can be divided roughly into three regions: log2 ε <

−10 (I), −10 ≤ log2 ε < log2 εmax(τ, m) (II) and
log2 ε > log2 εmax(τ, m) (III). Region I represents
the influence of random noise, and region III reflects
the effect of large delay time in a largeε range. Both
curves in I and III fail to yield the correctD2. Only
the curve in region II gives a good estimate ofD2, as
ε in region II is large than the noise amplitude, butε

is not too large so that the correlation integral is still
a correct manifestation of the fractal properties of the
chaotic attractor. Figs. 8(b)–(d) show the same corre-
lation integral computed usingW = 8, 15, and 20,
respectively. In contrast to the occurrence of “knee”
due to autocorrelation of the time series, here the
slope in the “knee” part gives a good approximation
of the correlation dimensionD2.

7. Conclusion

As the field of chaotic dynamics matures [28], it be-
comes important to establish and test theoretical rela-
tions between various dynamical quantities such asD2

andλ1 and those such asm andτ which are to some
extent under the control of the observer. A well-known
example is the result of Eckmann and Ruelle [29] who
derived a quantitative requirement for the amount of
the data in order to compute dynamical invariants such
as the correlation dimension and the Lyapunov expo-
nent. In this spirit, we have shown the existence of
such a relationship for the size of the effective linear
scaling region which incorporates an upper bound for
the delay time.

In Eqs. (12) and (13) we give what are essentially
first-order estimates of both the length of the effective
scaling region and the maximal permitted delay time
for fixed embedding dimension and length of the time
series. These estimates are then shown to be consis-
tent with the data from several low-dimensional model
chaotic systems. The quantity∆ in (12) (or modified
as in Section 5 in the presence of noise) is a reliable
indicator of the quality of the reconstruction. We also

show that the extrinsic geometry of the re-embedded
attractor plays a critical role in determining this qual-
ity. The increased folding observed with increasingτ

is due to the repeated iteration of a fixed, nonlinear
map. The good linear scaling region does not depend
on the window length alone: for fixed values ofw,
with m large enough to guarantee an embedding, and
τ large enough to avoid the problems of autocorrela-
tion, the length of the scaling region is largest for the
smallest admissible value ofτ .
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Appendix A. Evaluation of the correlation
integral for the tent map

In this appendix, we analytically compute the cor-
relation integral for the tent map for certain values of
the embedding dimensionm and delay timeτ .

For τ = 1 and m = 1, the correlation integral,
C(ε, 1, 1), is just the probability of two elements in
the time series to be withinε distance of one another,
i.e., C(ε, 1, 1) = P(|p − q| < ε). Since the tent map
has a uniform probability distribution, this probability
is equal to the area defined by|p − q| < ε in the
unit square 0≤ p ≤ 1 and 0≤ q ≤ 1. We obtain,
C(ε, 1, 1) = 2ε − ε2.

For τ = 1 andm = 2, the correlation integral is the
probability of two events occurring, i.e.P(|p−q| < ε

and|T (p) − T (q)| < ε), whereT (p) is one iteration
of the tent map. Ding et al. [7] explicitly calculated
C(ε, 1, 2) , the result is

C(ε, 2, 1)

= C(1
2ε, 1, 1) + R(ε)

= ε − 1
4ε2 +

{ 1
2ε2, 0 < ε < 2

3,

3ε − 7
4ε2, 2

3 < ε < 1.
(A.1)
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Fig. 9. (a) The second iterate of the tent mapT (x), and (b)
regions in the unit square of(p, q) where|T 2(p)−T 2(q)| < ε.

In Eq. (A.1),R(ε) is the correction term due to folding
and is defined to be the probability of1

2ε < |p−q| <

ε and|T (p) − T (q)| < ε.
For τ = 2 andm = 2, the computation becomes

more complicated. In this case the correlation integral
is the probability that|p − q| < ε and |T (2)(p) −
T (2)(q)| < ε, whereT (2)(p) = T (T (p)) is the second

iteration of the tent map. Consider the graph ofT (2)(p)

versesp, as shown in Fig. 9(a). If the distance be-
tweenp andq is less than1

4ε, then the distance be-
tweenT 2(p) and T 2(q) is less thanε. This is seen
by the horizontal lines with widthε and the vertical
lines with width 1

4ε in Fig. 9(a). There are 16 possi-
bilities for this to occur, depending on wherep andq

are. Each possibility is represented by a leg of one of
the 4 X’s, with each of horizontal width being equal
to 2(1

4ε), as shown in Fig. 9(b), where the shaded area
represents the probability that|T (2)(p) − T (2)(q)| <

ε. Note that the probability that|p−q| < ε is the area
enclosed by the dashed lines, as shown in Figs. 10(a)–
(d). Therefore the correlation integral is equal to the
intersection of the shaded areas in Fig. 9(b) with the
area enclosed by the two dashed lines. Depending on
the value ofε, there are four distinct cases, as shown
in Figs. 10(a)–(d), respectively. The correlation inte-
gral, C(ε, 2, 2), is equal to the sum of the areas of
the shaded regions. By calculating the shaded areas in
Figs. 10(a)–(d), we obtain

C(ε, 2, 2) =




1
2ε + 17

16ε
2, 0 ≤ ε < 2

5,

−3
4 + 7

2ε − 7
4ε2, 2

5 ≤ ε < 2
3,

3
2ε − 7

16ε
2, 2

3 ≤ ε < 4
5,

−1 + 4ε − 2ε2, 4
5 ≤ ε ≤ 1.

(A.2)

Whenε is small,C(ε, 2, 2) scales as12ε. This occurs
because the intersecting area in Fig. 10(a) is primarily
in the main diagonal strip for very smallε values. The
area in the main diagonal strip is approximately1

2ε.
From the above calculations, we see that the corre-

lation integral becomes increasingly more difficult to
compute analytically asτ increases. For example, for
τ = 3, there exist 64 cases for which the distance from
T (3)(p) andT (3)(q) are guaranteed to be less thanε

if |p − q| < 1
8ε. Nonetheless, for smallε values, the

correlation integral can be approximated by the area
along the main diagonal, as shown in Fig. 11. This
area is1

4ε − 1
64ε

2 for τ = 3.
For higher embedding dimensions, it is necessary

to consider the probability form events to occur. Ge-
ometrically this involves the intersection ofm cases.
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Fig. 10. Four different possibilities in the computation of the correlation integralC(ε, 2, 2) for the tent map: (a) 0≤ ε < 2
5, (b)

2
5 ≤ ε < 2

3, (c) 2
3 ≤ ε < 4

5 and (d) 4
5 ≤ ε ≤ 1.

For example, whenm = 3 and τ = 1, the cor-
relation integral is the probability that|p − q| <

ε, |T (p) − T (q)| < ε, and |T (2)(p) − T (2)(q)| <

ε. Nonetheless, whenε is small, the correlation in-
tegral scales as 2(ε/2(m−1)τ ) or 21−(m−1)τ ε. This is
due to the geometrical observation that the appropriate
area equated to the correlation integral is essentially a
strip, whose horizontal width is equal to 2(ε/2(m−1)τ ),
along the diagonal of the unit square. The diagonal
strip is related to the window length,(m − 1)τ , be-
cause it represents the approximate probability that

I
Fig. 11. Areas contributing toC(ε, 3, 2) for ε � 1 (shaded
regions). The diagonal area gives the main contribution to
C(ε, 3, 2) which is first-order inε. Other small shaded regions
give a contribution which is on the order ofε2.
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|T (m−1)τ (p) − T (m−1)τ (q)| < ε. Thus, we have

C(ε, τ, m) ≈ 2ε

2(m−1)τ
≈ C(ε, 1, 1)

2(m−1)τ
for ε � 1.

(A.3)
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