PHYSIGA 1

ELSEVIER Physica D 115 (1998) 1-18

Effective scaling regime for computing the correlation dimension
from chaotic time series

Ying-Cheng LaRP*, David Lerne® %!
@ Department of Mathematics, The University of Kansas, Lawrence, KS 66045, USA
b Department of Physics and Astronomy, Kansas Institute for Theoretical and Computational Science,
The Univerity of Kansas, Lawrence, KS 66045, USA
¢ Kansas Institute for Theoretical and Computational Science, The University of Kansas, Lawrence, KS 66045, USA

Received 1 April 1997; received in revised form 17 September 1997; accepted 17 September 1997
Communicated by Y. Kuramoto

Abstract

In the analysis of chaotic time series, a standard technique is to reconstruct an image of the original dynamical system
using delay coordinates. If the original dynamical system has an attractor, then the correlation dinbenziars image
in the reconstruction can be estimated using the Grassberger—Procaccia algorithm. The quality of the reconstruction can be
probed by measuring the length of the linear scaling region used in this estimation. In this paper we show that the quality is
constrained by both the embedding dimensgicend, more importantly, by the delay timeFor a given embedding dimension
and a finite time series, there exists a maximum allowed delay time beyond which the size of the scaling region is no longer
reliably discernible. We derive an upper bound for this maximum delay time. Numerical experiments on several model
chaotic time series support the theoretical argument. They also clearly indicate the different roles played by the embedding
dimension and the delay time in the reconstruction. As the embedding dimension is increased, it is necessary to reduce the
delay time substantially to guarantee a reliable estimat®-0fOur results imply that it is the delay time itself, rather than
the total observation timén — 1), which plays the most critical role in the determination of the correlation dimension.
Copyright © 1998 Elsevier Science B.V.

1. Introduction ministic origin. One way to distinguish a chaotic time
series from the output of a stochastic process is to
In many physical, chemical, engineering and bio- establish the existence of a finite number of effective
logical experiments, the observations consist of one degrees of freedom. Estimating the dimensionality
or more time series. When the underlying dynamics of the underlying chaotic process is thus quite im-
is chaotic, such a time series appears random, and itportant. In this regard, the correlation dimensibg,
is important to be able to correctly identify its deter- one of the most often considered dimensions char-
acterizing the multifractal property of the underlying
_— ~ chaotic set, has been extensively investigated since
o ey oo, e e Bl o a1 Grassherger and Procaccia (GP) [] frst proposed
913 864 5262; e-mail: lai@poincare.maths.ukans.edu. a computationally efficient algorithm to estimate it
1E-mail: lerner@poincare.math.ukans.edu. from chaotic data. Specifically, one first reconstructs
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an equivalent dynamical system using the method function ¥(z) from the time seriesc(¢), ¥(r) =
of delay-coordinates embedding [2,3]. One then es- ([x(r 4+ 1) — X][x(t) — X])/({[x(r) — X]?), whereX is
timates the correlation integral(¢) for a range of the averaged value af(r), and the average) is with
values of the distance and plots log”(¢) against respect to time. Theiler suggested to selectsuch
loge. By extracting the slope of this plot in an ap- that¥(r) ~ 1/e. Methods based on the correlation
parently linear scaling region at a series of increasing integral were developed by Liebert and Schuster [10]
embedding dimensions, one obtains an estimate ofand by Kember and Fowler [11]. Buzug and Pfister
the correlation dimension. (See Section 2 for pre- [12] also considered obtaining optimal delay time and
cise definitions of delay-coordinate embeddifge), embedding dimension by analyzing both global and
and the fractal dimension spectrum.) We mention, local behaviors of chaotic attractors. More recently,
however, that if one is only interested in distinguish- Rosenstein et al. [13] suggested a computationally
ing between deterministic chaos and random noise, efficient procedure based on reconstruction expan-
alternative methods exist which do not require the sion for choosing the proper delay time. It should be
computation of the correlation dimension [4,5]. noted that these empirical procedures all yield similar
There are two critical parameters involved in the choice of proper delay times which work quite well
construction of delay-coordinate embedding and in practical applications.
the subsequent application of the GP algorithm: (1) In this paper we show that the effective linear scal-
the embedding dimension, and (2) the time delay ing region that can be used reliably for computibg
7. Regarding the embedding dimension, there are is very sensitive to the choice of time delay used in
general and rigorous results due to Takens [3] and the reconstruction of the phase space. We develop in-

Sauer et al. [6] (see Section 2.1), but if the task is
just to compute the correlation dimension, Ding et
al. [7] pointed out that the correct value of the cor-
relation dimension can be obtained withbeing the
smallest integer larger thab, provided that the data
are infinitely long and noiseless, although for finite
and noisy time seriesyz needs to be larger thahs,.
For the choice of the proper delay time, however,
one usually relies on empirical criteria. For a scalar
chaotic time series(¢), the basic idea is to choose
7 such that the coordinates(r) and x(r + t) are

equalities relating the maximum allowed delay time
to quantities such as the embedding dimension, the
length of the time series, and some dynamical invari-
ants of the underlying chaotic process. Our results
show that, for a given embedding dimensianthere
exists a maximum allowed delay timeabove which

the computation oD3 is no longer reliable. Our main
results are Eq. (12), which can be used to estimate
the size of the linear scaling region, and Eq. (13),
which gives an upper bound for the allowed delay
time. An important implication is that the delay time

somewhat independent but not completely uncor- plays a critical role in the determination of the cor-
related so that they can be treated as independentrelation dimension. As the embedding dimension is

coordinates in some reconstructed phase space. If
is too small,x(r) andx(r + t) are too correlated to

increased, it is necessary to reduce the delay time sub-
stantially to guarantee a reliable estimate of the corre-

serve as independent variables in the reconstructedlation dimension. The quality of the delay-coordinate

vector space. It is too large, then for a chaotic time
series,x () and x(t + t) are uncorrelated as com-

reconstruction, as measured by the length of the lin-
ear scaling region, deteriorates more rapidly with in-

pletely random variables and, hence, the underlying creasingr (for fixed m) than it does for increasing

deterministic dynamics may be lost. A very elabo-

(and fixedr). Thus, in computindD>, the roles played

rate procedure based on the information content of by the delay time and the embedding dimension are
the chaotic attractor was developed by Fraser and apparently not equally influential. This is contrary to

Swinney [8]. A straightforward and computationally
simple criterion was suggested by Theiler [9]. Us-
ing this criterion, one computes the autocorrelation

some speculation in the literature that the combina-
tion im — 1)t ~ mt, the so-called window size, is
the most critical parameter in chaotic data analysis.

~
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A brief account of part of the present work has been functionsg andF. The first step is to reconstruct a

published in [14]. dynamical system which is equivalent to the original.
The paper is organized as follows: In Section 2, we Generically, this can be done using delay coordinates,

review the fundaments of the delay-coordinate embed- as was suggested by Packard et al. [2] and was shown

ding technique and the GP algorithm. In Section 3, we rigorously by Takens [3]. Specifically, given the setup

present numerical results with theehon map which  described above, for any positive integersand z,

indicate that the length of the linear scaling region in we can define a mal: R — R™ by

the computation of the correlation dimension changes

dramatically as the delay time changes. In Section 4, x=H(z) = (g(2), g(F*(2)), ..., g(F" D7 (2))).

we derive our main results, Egs. (12) and (13). In A3)

Section 5, we check the validity of our theoretical re-

sults by using time series produced from both discrete |n terms of the scalar time series, this reads

maps and continuous flows. In Section 6, we discuss

the effects of noise, the geometry of large time de- x, = H(z,) = (xu, Xntz) - - - » Xntm—1)z)- 4

lays, and the role of, m, and the window sizent

with respect to the length of the linear scaling region.  In what follows, we shall refer ta as the delay

Concluding remarks are in Section 7. time. For smooth dynamical systems, the true time lag

is tT. The fundamental theorem by Takens [3] states

that for almost alll’ and observableg, if the motion

takes place in a compact region of phase space, and if

m > 2d + 1, whered is the dimension of the manifold

in which the attractor lies, theid is one-to-one. Thus

generically,H embeds the original dynamical system

in R™. So, if g andF are differentiable, so isl. This

means that any differential or topological invariants of

the original dynamical system can also be computed

dz —f(2) with z(r0) = 2o. Q) from the recor.13truc.ted systeml]ﬂ’f‘. .

dr Since one is typically interested in the geometry

of an attractor whose dimension is less thanand

the computational effort needed for dimension calcu-

lations increases with the embedding dimension, con-

siderable effort has been directed to minimizing the

embedding dimension required. Recently, Sauer et al.

[6] proved that an embedding of the attractor can be

2. Review of the Grassbherger—Procaccia algorithm
2.1. Re-embedding a scalar time series

Supposez(z) is a trajectory of thei-dimensional
dynamical system

Let &,:RY — R? be the flow of this system at
time ¢, and letg : RY — R be an observable. If the
measuring process samplgsevery T units of time
beginning atr = fg, the observations corresponding
to the trajectory constitute a scalar time serfes)

with
obtained ifm > 2Dg+1, whereDy is the box-counting
xp=x(tg+nT) = g(z,) dimension of the attractor. Another important result in
— ¢(2(t0 + nT)) = (1 (20)). @) this direction is due to Ding et al. [7]. They showed

that if a strict embedding is not required (i.e., if lower-
Let us now fixT and simply writeF for @7. This also dimensional self-intersections of the attractor are per-
allows us to consider dynamical systems described by mitted), as in the case of computing the correlation
discrete maps such as those arising on the Pdncar dimensionD3, then in the limiting case of noise-free,
surface of section of continuous flows. infinite amount of dataD, can be obtained with the

The problem, given the scalar time series, is to GP algorithm ifin is any integer larger thah,. From

recover as much information as possible about the a practical point of view, these theoretical results are
original system without explicit knowledge of the somewhat tempered by finite sample sizes, sampling
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rates which are far from ideal, numerical errors, and the linear portion of the plot of lo§y (¢, T, m) ver-

noise. sus loge for a series of increasing values of. riRor
m < D>, the dimension of the reconstructed phase
2.2. The correlation dimensioP; space is not high enough to resolve the structure of

the attractor and, hence, in this case the slope approx-
In many dissipative dynamical systems, the asymp- imates the embedding dimension. Asncreases, the
totic set is often a chaotic attractor. The dimensions of resolution of the attractor in the reconstructed phase
this attractor, which are often fractional, are topologi- space improves. Typically, the slope in the plot of
cal invariants. An accurate estimate of the dimension logCy (e, t, m) versus log increases withm until
of the attractor is a primary step towards understand- it reaches a plateau; its value at the plateau is then

ing the underlying dynamical system. taken as the estimate @, [1,7,17,18]. For an infi-
An often computed dimension in chaotic time se- nite and noiseless time series, the value:ait which
ries analysis is the correlation dimensi@p which this plateau begins satisfies = Ceil(D2), where

is one of the infinite number of dimensions in the di- Ceil(D>) is the smallest integer greater than or equal
mension spectrum that characterizes the multifractal to D, [7]. On the other hand, short data sets and ob-
structure of the chaotic attractor [15,16]. Grassberger servational noise can cause the plateau onset to oc-
and Procaccia [1] showed in 1983 thag can be eval- cur at a value ofn which is considerably larger than
uated using the correlation integ@l(¢), which is de- Ceil(Dy). Even so, the embedding dimension at which
fined to be the probability that a pair of points chosen the plateau is reached still provides a reasonably sharp
randomly with respect to the natural measure is sep- upper bound for the true correlation dimensitg.
arated by a distance less thamn the attractor . For ~ Systematic examination of the dependencies of the
a trajectory of lengthv in the embedding spad&™, length of the linear scaling region on fundamental pa-
the correlation integral can be approximated by the rametersr, m, andmt is the main goal of this paper.
sum:

N N
2 3. Numerical results for the HeEnon ma
CN(6)=mZ Z @(€_|Xi_xj|), P
.5
= ®) In this section, we present extensive numeri-
cal results on the behavior of the correlation sum
where® (.) is the Heaviside function given l# (x) = Cn (e, T, m) for the Henon map [19],

1forx > 0and 0 otherwise, and the norm is defined by 2
Xpt1=a — x; + byp,

IX| = max{|x;|:1 <i < m}. V41l = Xn,

()

For N large, we haveCy(e) ~ C(¢). Grassberger ~ With a = 1.4 andb = 0.3. For this mapD, ~ 1.195,

and Procaccia argued that the correlation dimension So for a sufficiently long time series, the correct value

D> is given by of D, can be extracted using an embedding dimen-
sionm = 2 [7]. To generate a time series, we choose

(6) a random initial condition, iterate the map 2000 times
to get rid of the initial transient, and then record the

In practice, for a time series of finite length, the sum next 28 000 values aof,. To compare results at vari-

in Eq. (5) also depends on the delay timand the em-  ous embedding dimensions, we normalize the result-

bedding dimensiom. Thus, for the rest of the paper ing time series via‘, = (x;, — Xmin)/ (*max — Xmin)

we shall denote the correlation sum By, (¢, t, m). so that 0< x, < 1, Vn. With the norm|x —y| =

Due to such dependencies, the correlation dimension max(|x; — y;|:1 < i < m), for vectorsx andy in

D> is usually estimated by examining the slope of the reconstructed phase space, the maximum distance

. . logC
Do = lim lim g—N(G)
e->0N—co loge
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Fig. 1. For a time series of lengti = 28 000 from the l#non map at = 1.4 andb = 0.3, log, C (¢, T, m) versus log e for m = 2
(a), 4 (b), 8 (c), and 12 (d). In each figure, there are 20 plots corresponding to values of the delayraimgéng from 1 to 20.

between any pair of points is 1. The correlation sum

Cn (e, T, m) is evaluated at 200 valuesofor log, € €

[—20, 0] and for embedding dimensions ranging from
m = 2tom = 12. For each embedding dimension, the
computation is performed with a delay time ranging

fromz =1tor = 20.

Figs. 1(a)—(d) show logCy (e, T, m) versus log e

form = 2, 4, 8, 12, respectively, where in each

figure, the curves correspond to= 1 to r = 20.

Figs. 2(a)—(d) show logCn (¢, T, m) versus log e for
t =1, 2, 4 and 8, respectively, where the curves in
each figure correspond to embedding dimensions from
m = 2 tom = 12. From these figures, we observe the
following:
1. For the range of embedding dimensions studied,
the plot of the correlation integral at= 1 yields
the largest linear scaling region. The slope of the
fitted straight line gives the correct value b5.
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Fig. 2. For the same time series as in Fig. 1,169 (¢, 7, m) versus loge for t =1 (a), 2 (b), 4 (c) and 8 (d). In each figure,
there are 11 plots corresponding to embedding dimensions ranging from 2 to 12.

2. For a fixed embedding dimension, the linear scal-
ing region decreases with increasing valuest of
(Figs. 1(a)—(d)). For instance, when = 8, there
is no good scaling region if > 4. This indicates
that if t is too large, the GP algorithm no longer
yields a valid estimation of the correlation dimen-
sion Da.

. For small values of, while there exists a linear
scaling region leading to the correct value o4,

4,

ase increases there is a crossover from the good
scaling region to a straight line whose slope is
equal to the embedding dimension.

For a fixed delay time, the linear scaling region
decreases as the embedding dimensioris in-
creased (Figs. 2(a)-(d)). However, there is no ap-
parent crossover. This can be best seen in Fig. 2(a),
wheretr = 1, and the sizable linear scaling region
appeatrs to persist as is increased from 1 to 12.
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These observations suggest the following: constraint which, when solved far, establishes the

1. The range of the linear scaling region from which lower bound of the region as
D> can be correctly extracted depends on both
andm, more sensitively onr, indicating that the
roles of t andm in determining the linear scal-
ing region are different. Thus, utilizing the win-
dow sizew = (m — 1)t to characterize the quality Note that emin(z, m) is an increasing function of
of the delay-coordinate embedding analysis is not both its arguments, and the valuestoindm affect

1-2log, N+ tmTKzloge
D>

< log, emin(t, m).

(10)

sufficient. €min(z, m) equally.

2. As the embedding dimension is increased, the Next, we considetmax(t, m), which determines the
delay timer should be decreased to ensure a sizable upper end point of the linear scaling region. For large
linear scaling region. values ofz, the different delay coordinates are essen-
In the sequel, we present an analysis to account for tially uncorrelated. Consequently, at large distances

the above numerical observations. ¢, the behavior ofCy (¢, , m) is similar to that ob-

tained from a sequence of random vectors inthe
dimensional embedding space. Thus, we expect the
family of curves to have a straight line with slopeas

its envelope. This behavior is indeed observed in nu-
Our task is to establish conservative upper and lower yarical computations (Figs. 1(a)—(d)). The line given

bounds for the linear scaling region in terms of éog by Eq. (9) intersects the line of slope through the
This will then permit us to fix an upper limit for the origin at a value of which satisfies

delay timet at fixed embedding dimension and

fixed number of data points. Dzlogy e —mtTKzlog, e =mlog;e.
Inside the scaling region, the plots of log

(e, T, m) against log give a family of parallel lines

with slope D3; the vertical intercept varies with the

precise valges ofn and t. For S|mple dyn§m|cal l0g €max <

systems which can be solved analytically, this can be m — D3

seen from the explicit expression Ofy (e, 7, m). For Using Egs. (10) and (11), and letting represent the

instance, for the tent mapg = 1), fore near O we  size of the linear scaling region, we find
find (see Appendix A)

4. Estimating the size of the linear scaling region

Taking this for the upper bound of the scaling region
gives

—mtTK2log, e
—mrlRol0g € (11)

A =100, €max(t, m) — 109, €min(t, m)

|ng C(E, T, m) = |092€ —mT+T+1. (8) ngrTlogze
< —_——_—
For more general dynamical systems, Grassbherger and m — D2
Procaccia [20] derived the following relation: n 2log; N —1—mtTKzlogy e (12)

D,

Note that from Eq. (12), the effects @f and
where K> is the order-2 entropy. Equivalently, from  on eqnax(t, m) are apparently different due to the ap-
Eq. (9), if J is the number of distinct pairs of points  pearance ofn in the denominator. Thus, although
on the attractor which are less thamnits apart, then ¢, (t, m) depends equally om andz, the size of the
in the scaling region, we have linear scaling region changes in a distinctly different
manner asn or t changes. This observation gives a
qualitative explanation to Figs. 1 and 2. As a practical
Imposing the modest requirement thatbe > 1 matter, in order to estimat®,, the linear scaling re-
throughout the linear scaling region, we obtain a gion must span at least an order of magnitude.im

log, Cy (e, T,m) ~ Dylog,e —mtTKolog,e, (9)

J ~ %NZEDze—mrTKz_
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terms of the base-2 logarithmic scale, we shall require
thatA > 4. This is a simple, easily checked test of the
quality of the reconstruction using delay coordinates.
Now we can solve Eq. (12) for to obtain an upper
bound for the delay time:

(2logy N — 1 —4Dy)(m — Do)
m2K,T log, e ’

Tmax < (13)
Although our main interest lies in Egs. (12) and
(13), we can also solve (12) to obtain an upper bound

for the embedding dimension:

B ++/ B2+ 16aDy
Mmax < 2 , (14)
o
where
a = KtT log,(e),
and
B =2log,(N) — 1+ (a« — 4)D5. (15)

5. Numerical confirmation of the length of the
linear scaling region and the upper bound for
the time delay

To check the validity of Egs. (12) and (13), we ex-
amine low-dimensional discrete maps and flows for
which the quantitiedD, and K, can be obtained via
other avenues. In particular, the correlation dimen-
sion Dy can be calculated by using a box-counting
procedure [15]. For dynamical systems described by
one-dimensional or two-dimensional maps, the order-
2 entropy is the positive Lyapunov exponent [20].

5.1. Maps

For the Henon map at = 1.4 andb = 0.3, D, ~
1.195. Since there is just one positive Lyapunov ex-
ponent, we have&k, = A1 ~ 0.42. For a time series
of N = 28000 points, we obtairf(= 1),

).

-D
Tmax(m) <39.22(m s
m

(16)

Selective results are shown in Figs. 1(a)—(d) and 2(a)—

(d). Clearly, for large values of, delay coordinates
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Fig. 3. Theoretical and numerical results for the upper bound
of the delay time at various embedding dimensions (a) for the
Hénon map, and (b) for the tent map.

are essentially independent of each other and, hence,
we see that the curves 9@y (¢, T, m) versus log e
have a slopen for large values ot. The curves fol-
low this envelope fok > emax(t, m) and then level
off to obey the asymptotic law loggCy (e, T,m) ~
Dslog, e — KotTmlogye. For m 4, we have
Tmax(4) ~ 7 from Eq. (16), while numerical compu-
tation givestnax(4) ~ 8 (Fig. 1(b)). Form = 8, we
havetmax(4) ~ 4 from Eq. (16), and numerics gives
max(4) ~ 4 (Fig. 1(c)). Fig. 3(a) shows both the the-
oretical prediction formax(m) and the corresponding
numerical results for embedding dimension ranging
fromm = 3 tom = 12. The agreement between
Eqg. (16) and the numerics is good.
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Fig. 4. For thex-measurement of the Lorenz equation (17),,l0q (¢, T, m) versus loge for (a) m =7 (fixed),z =1,...,7, (b)

m = 10 (fixed),z = 1,..., 6, and (c)r = 1 (fixed),m =3, ..., 10. (d) Pointwise estimates db,: dlog, Cy (e, T,m)/dlog €
versus loge for t =1 (fixed),m =3, ..., 10.

Results with the tent map are summarized in E _ _§Z Ty
Fig. 3(b), where the theoretical and numerical dt 3 '
estimates oftmax(m) are shown for embedding di-
mensions ranging fromm = 2 tom = 12. Again, a After discarding an initial transient of 5000 points, an
good agreement is obtained. orbit of 30 000 points on the attractor of (17) was com-
puted numerically. The individual points on the orbit
are separated in time iy = 0.3 (the time required for
the autocorrelation function of thecoordinate of the
solution to (17) to decay to/& of its original value).
Integration between timesands + T was done with
a standard adaptive RK5 routine.

5.2. Flows

As an example of a continuous dynamical system,
we consider the Lorenz equation [21]:

dx Figs. 4(a) and (b) show the plots of lpGy
o —10(x — y), (¢, 7, m) versus loge form =7 (r =1,...,7) and
dy m =10 (t =1,...,6), respectively. We see that for

— =x(28-12) — y, a7

dr fixedm, the size of the linear scaling regime decreases
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as t increases. Figs. 4(c) and (d) show for fixed o b) m=6
7 = 1, the plots of log Cy (e, T, m) versus log e and l ' slope = 1.195 = D, /-
dlog, Cy (e, T, m)/de versus loge, respectively, for -5 1 /
m = 3,...,10. As in the case of maps, the length of
the linear scaling region is apparently more sensitve & -10-
to increase irr than to increase im (Figs. 4(a) and :;
(b) versus Fig. 4(c)). Tz -154
To test the goodness of our theoretical prediction, t)DN
it is necessary to determine the relevant quantiies & -20-
in Eq. (13). The approximately constant value of |
dlog, Cy (€, T, m)/de in the sizable plateau region in ~257
Fig. 4(d) givesD, ~ 2.04, while we havek,; ~ 1.1 -30 J
estimated from—1/7(dInC/dm) as suggested in 15 _1'0 _’5 0

[20]. SinceT = 0.3, the actual time delay is.8r, for

some integet. In this case, Eq. (13) gives the results

Tmax < 4 whenm = 7 andtmax < 3 whenm > 9,

once again in good agreement with the experimental 0

results shown in Figs. 4(a) and (b). |
Similar results were obtained for thé8sler system -5+
and for the forced damped pendulum.
< -104
l_)
)
6. Noise, geometrical interpretation of large time QZ -154
delays, window size, and the “knee” behavior of 20
X _20-
6.1. Effect of noise 95
When the time series is contaminated by noise, -30
structures on the attractor with scales less than the -15 -10 -5 0
noise amplitude:oise Can no longer be resolved; for log. e
2

€ < enoise Slopes in the plots lagCx (¢, T, m) versus

log, € keep increasing as the embedding dimension  Fig. 5. For a noise contaminated time serieshof= 28 000

is increased. The correct slopé3y) can be extracted  points from the #non map, the plots of lggCy (¢, 7, m) ver-
nlv for . Fios. n illustr hi sus log e for r = 1 to 20 atm = 3. The noisy time series is

only Tor € > €noise gs 5(2) & d (b) u,St ate t, S generated by iterating the@don map with an additive noise

phenomenon for a noise contaminated time series of jo; 2-8,, “where s, is a random number uniformly dis-

N = 28000 points from the Bhon map, which shows tributed in the [01]. After normalization, the noise amplitude

plots of log, C (e, T, m) versus loge for t = 1 to is approximately 210, The effect of noise induces a crossover

7 : : i from random to deterministic behavior at lpg~ —10.

20 atm = 3 andm = 6, respectively. The time series

was generated by iterating theehon map with an ad-

ditive noise term 28¢,, whereo,, is a random vari- log, € > —10 are still approximately the value @f,,

able uniformly distributed in [01]. After normalizing in so far asr is small enough.

the time series to the unit interval, the noise amplitude  The presence of noise can change the effective scal-

becomes approximately 8/4 = 2-10. Clearly, there  ing region in the computation db,. For givenr and

is an abrupt change in each of the plots atlogv m, if engise < €min(t, m), the scaling region, and hence

—10 for all r values shown. The slopes of the plot for Egs. (12) and (13) are unaffected. If, howe¥gsise >
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emin(t, m), then the effective scaling region is given
by

- —mtTK>log, e

m — D - |ng €noise (18)
RequiringA > 4, we obtain
Tmax(m) < [log, (1/€ncise) — 4](m — DZ). (19)

mK>T log, e

Clearly, if engise > €max(t, m), it is no longer possible
to computeDs. In fact, a stronger condition holds: if

mK>T log, e}
(m — D2)

|092(€n0ise) 2 — |:4 +

(corresponding tamax < 1), thenD, can no longer
be reliably computed using the correlation integral.

In other words, the lack of correlation observed be-
tween the variables,, andx, . is due not only to
the fact that the data correspond to points that are far
apart on the original attractor. It is also, and primar-
ily, due to the fact that the extrinsic geometry of the
embedding map itself is a function of and becomes
considerably more complicated with increasing

The above behavior can be summarized more for-
mally by factoring the mapi of Eq. (3) through an
intermediate copy of the original manifold on which
the dynamical system lives: Lt be a differentiable
dynamical system oR? or more generally on the-
dimensional manifoldV. Let g: M — R be an ob-
servable, and suppose we emhédinto R™ in the
manner previously discussed. Define

o MxMx---xM— M" by
6.2. Some geometrical considerations m times
021,22, ., Zm) = (21, F(22), ..., F" " X(z)).
The correlation integral is a spatial average; dis- (20)
tances between pairs of points are computed without
regard to their temporal ordering. Itis known [22] that, ~ Then o%(z1,22,...,2s) = (2, F'(22),...,

in the case of flows, too short a delay time resultsinan F*™ " (zx)). We can embed/ onto the diagonal

underestimate of the correlation dimension due to the of M™ by sendingz e M — «(2) = (z2.Z,...,2).

fact that pairs of points which are close in time domi-

nate the integral for small values efFor this reason,
it is important to choose greater than somey, at

which the temporal correlations become unimportant

[8,23-25].

Note thato o« (and hence® o) is a diffeomorphism
even if F is not. The observablg induces a map
g . M" — R" via

8(z1,22,...,2n) = (8(20), 8(22), . ..

Here we wish to point out that there is a straightfor- \We can now express the map of Eq. (3) as the
ward geometrical explanation for the rapid disappear- composition of the three separate maps

ance of the good scaling region for largeas well.

Consider the time-delay embeddings of the time series H:(2) = (§ 0 0" 0 1)(2)

from a one-dimensional map,+1 = f(x,) that pos-
sesses a chaotic attractor, for instance, so fhat
1. Using values off > 1 is equivalent to examining
the rth iterations of the map. Consider, say,= 2.
For large values of, the plot of 7 (x,) versusx,

is effectively two-dimensional due to the folds of the

map [26]. Thus, when is large, one obtains the er-
roneous resulD,; = 2. This type of behavior is also

=(g(2), g(F (), ..., g(F™ V" (2)). (21)

Recall that our scalar time series is assumed to
arise from a sequence = FX(zg) € M, so the
re-embedded trajectories are given by the sequences

{H(z); k=0,1,2,...} CR™.

We thus see that using the delay timeorresponds

observable for embedding continuous flows. Generi- precisely to computing iterations of the map for

cally, successive increments of the delay titneorre-

each of these points. The mapandg do not change

spond geometrically to successive iterations of a fixed with t, so all the observed computational effects re-

mapo which depends only on the initial time delay.

sult from this iterative process. Although we do not
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give a rigorous proof here, it is clear that the effect
of these compositions is to increase the complexity
of the embedding. For a fixed distanegincreasing

7 increases the probability that any two points lie on
different folds of the attractor. It is this geometric ef-
fect which renders the computation B problematic

at larger. In particular, asr increases, the value of
€max Must also decrease to be less than half the aver-
age distance between the folds. This is quite different
from the effect of increasing the embedding dimen-
sion while leavingr fixed. Indeed, as is clear from
Figs. 2(a)—(d) and 4(c), the linear scaling region near
l0g, emax is only slightly affected whem is increased
while 7 is held fixed at small values.

6.3. The relation between and window sizev

For continuous dynamical systems, the quantity
w = (m — 1)tT is called the window size. Because
it represents the total time interval over which the
original trajectory must be observed to construct each
delay vector, it is often considered to be a more
fundamental quantity than eithet or r separately
[22,23,25].

From the standpoint of accurately determining the
correlation dimension however, it is not clear that the
quality of the reconstructed dynamics will depend in
a useful way on the window size. In fact, the scaling
region in Eq. (12) can be written as

A

’

- 2log,(N) —1—wK2log,(e) wK2log,(e)
~ D> m — Do

(22)

wherew ~ mtT has been used. For fixed window
size, this has the form

where A and B are positive constants. This implies
that in order to increasel, one should increase the
embedding dimensiom. Sincew is fixed, this means
that the delay time should be decreased. This expec-
tation is borne out by Fig. 6, in which log—log plots
of correlation integrals versus distance are shown for
the Lorenzx-coordinate, using a fixed window size

Y.-C. Lai, D. Lerner/Physica D 115 (1998) 1-18

Fixed window w = (m-1)t = 24

-5
= -10-
g
P’\
&L -15-
Qz m=>5,1=6 \
blc)\] -20+ \slope =2.04=D
(@) 2
-25+ m=25,1=1
-30 T T T T
-10 -8 -6 -4 -2 0
logzs

Fig. 6. Correlation integrals for the-measurement of the
Lorenz flow Eq. (17) at fixed window = (m — 1)t = 24 but
different combinations ot andm. Clearly, for fixedw, larger
m and smallerr yield larger linear scaling region.

of w = 24 for different admissible values @f and

7 (five combinations ofn andt). The largest linear
scaling region clearly occurs far = 25 andr = 1,
while form = 5 andt = 6, there is no apparent linear
scaling region. These considerations lend some sup-
port to the assertion that one should always choose
T as close as possible tg,in (e.g., as thdirst min-
imum or zero of the autocorrelation function [23] or
the first minimum of the mutual information [8]). Al-
though our reasoning is somewhat different, this is in
agreement with the conclusions of Gibson et. al. [25].

6.4. “Knee” due to large time delay

It is known that time series either from stochastic
process or from deterministic chaotic process may ex-
hibit anomalous structures in the correlation integral
plots [27]. One example is the occurrence of a “knee”
where the plot of the correlation integral on a logarith-
mic scale exhibits distinct linear regions with different
slopes. Theiler [27] showed that in certain cases, this
anomalous behavior is caused by a high degree of cor-
relation among nearby data points in the time series,
and he proposed to ignore the contribution to the cor-
relation integral from nearby points in the embedding
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o b)) w=86
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Fig. 7. For a time series lengthi = 40000 from the i#non map, logCx (¢, T = 8, m = 4, W) versus log ¢ for W = 1 (a), 6 (b),
11 (c) and 16 (d). The relatively large delay time= 8 used induces the “knee” behavior in the plot (a). Note that uing 7 in

Eqg. (23) does not eliminate the observed “knee” behavior.

space to remedy this behavior. Specifically, Theiler where W > 1 is an integer. It was demonstrated
suggested the following modified correlation integral that if W > t, then the “knee” behavior in the cor-
in the GP algorithm:

Cyle,,m, W) =

2
N2

N—j

N
YD O —Ix —xD,
=W i

=1

(23)

relation integral can be eliminated and the resulting
integral would yield the correct value db, [27].

Here, we point out that large time delays may also
cause the occurrence of “knee” in the correlation
integral. One case is illustrated in Fig. 7(a), where
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@ w=1 b) w=8
0 : : 0 : :
knee slope =D, | /. knee slope =D, |
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Fig. 8. For the same noise contaminated time series as in Fig. 7ClpG, t = 3,m = 4, W) versus loge for W =1 (a), 8 (b),
15 (c) and 20 (d). There are now three distinct regions in the plot, as described in the text. The slope in region Il, the “knee” part,
gives a good approximation to the correlation dimensipn

log, Cn (e, T =8, m = 4) versus loge is plotted for due toloss of the correlation between components
a noiseless time series 8f = 40 000 points from the  of points in the embedding space, in contrast to the
Héenon map. The “knee” behavior is not eliminated “knee” behavior discussed by Theiler [27] which
by usingW > 1 in Eq. (23), as shown in Figs. 7(b)- is due to the excessive correlation between nearby
(d) for w = 6, 11, and 16, respectively, where we points in the time series. The “knee” behavior due to
notice thatW >t in Figs. 7(c) and (d). The reason is loss of correlation is particularly severe in the pres-
that the occurrence of this type of “knee” is mainly ence of small random noise. Fig. 8(a) shows a plot
due to the large delay time used, or equivalently, is of log, Cn (e, T, m) versus loge for a time series
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from the Henon map, whereVv = 28000,7 = 3, show that the extrinsic geometry of the re-embedded
m = 4, and there is random noise with amplitude attractor plays a critical role in determining this qual-
2710 mixed with chaotic data. It is clear that the plot ity. The increased folding observed with increasing
can be divided roughly into three regions: jag < is due to the repeated iteration of a fixed, nonlinear
—10 (), =10 < log, e < log, emax(t, m) (II) and map. The good linear scaling region does not depend
log, e > log, emax(t, m) (lll). Region | represents  on the window length alone: for fixed values of

the influence of random noise, and region Il reflects with m large enough to guarantee an embedding, and
the effect of large delay time in a largerange. Both 7 large enough to avoid the problems of autocorrela-
curves in | and lll fail to yield the correcb,. Only tion, the length of the scaling region is largest for the
the curve in region Il gives a good estimateldf, as smallest admissible value of

€ in region Il is large than the noise amplitude, laut

is not too large so that the correlation integral is still
a correct manifestation of the fractal properties of the
chaotic attractor. Figs. 8(b)—(d) show the same corre-
lation integral computed using = 8, 15, and 20,
respectively. In contrast to the occurrence of “knee”
due to autocorrelation of the time series, here the
slope in the “knee” part gives a good approximation
of the correlation dimensioms.
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7. Conclusion Appendix A. Evaluation of the correlation
integral for the tent map

As the field of chaotic dynamics matures [28], it be-
comes important to establish and test theoretical rela- I this appendix, we analytically compute the cor-
tions between various dynamical quantities suchas  relation integral for the tent map for certain values of
andx; and those such as andt which are to some  the embedding dimension and delay timer.
extent under the control of the observer. Awell-known ~ Forz = 1 andm = 1, the correlation integral,
example is the result of Eckmann and Ruelle [29] who C(€, 1, 1), is just the probability of two elements in
derived a quantitative requirement for the amount of the time series to be withia distance of one another,
the data in order to compute dynamical invariants such i-€., C(€, 1, 1) = P(|p — g| < €). Since the tent map
as the correlation dimension and the Lyapunov expo- has a uniform probability distribution, this probability
nent. In this spirit, we have shown the existence of is equal to the area defined By — ¢g| < € in the
such a relationship for the size of the effective linear Uunit square 0< p < 1 and 0< ¢ < 1. We obtain,
scaling region which incorporates an upper bound for C(e, 1, 1) = 2¢ — €.
the delay time. Fort = 1 andm = 2, the correlation integral is the

In Egs. (12) and (13) we give what are essentially probability of two events occurring, i.€.(|p—q| < €
first-order estimates of both the length of the effective and|T (p) — T(g)| < €), whereT (p) is one iteration
scaling region and the maximal permitted delay time Of the tent map. Ding et al. [7] explicitly calculated
for fixed embedding dimension and length of the time C(e, 1, 2) , the result is
series. These estimates are then shown to be consis-

; ) : C(e,2,1
tent with the data from several low-dimensional model (€ )
; i £ = C(3€,1,1) + R(e)
chaotic systems. The quantity in (12) (or modified 26
as in Section 5 in the presence of noise) is a reliable 1.2 %ez, O<e< % (A1)
indicator of the quality of the reconstruction. We also N 4 3e — 42162, % <e<l |
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Fig. 9. (@) The second iterate of the tent mApx), and (b)
regions in the unit square ©p, g) where|T2(p) —T2(q)| < .

In Eq. (A.1),R(¢) is the correction term due to folding
and is defined to be the probability éé <lp—gq| <
eand|T(p) —T(q)| < e.

Fort = 2 andm = 2, the computation becomes
more complicated. In this case the correlation integral
is the probability thatp — g| < € and |T®(p) —
T@(g)| < €, whereT @ (p) = T (T (p)) is the second
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iteration of the tent map. Consider the grapi'® (p)
versesp, as shown in Fig. 9(a). If the distance be-
tweenp andgq is less than;lle, then the distance be-
tweenT?2(p) and T'2(g) is less thare. This is seen

by the horizontal lines with widtl and the vertical
lines with width e in Fig. 9(a). There are 16 possi-
bilities for this to occur, depending on whepeandg

are. Each possibility is represented by a leg of one of
the 4 X’s, with each of horizontal width being equal
to 2(%16), as shown in Fig. 9(b), where the shaded area
represents the probability thif @ (p) — TP (¢)| <

€. Note that the probability thap — ¢| < € is the area
enclosed by the dashed lines, as shown in Figs. 10(a)—
(d). Therefore the correlation integral is equal to the
intersection of the shaded areas in Fig. 9(b) with the
area enclosed by the two dashed lines. Depending on
the value ofe, there are four distinct cases, as shown
in Figs. 10(a)—(d), respectively. The correlation inte-
gral, C(e, 2, 2), is equal to the sum of the areas of
the shaded regions. By calculating the shaded areas in
Figs. 10(a)—(d), we obtain

1 17 2 2

5€ + 16€° 0§6<§,
_§+ZE_Z€2’ 256<2,

5 2 173 7 5 3
Cle.22)=1,4 7 2 2 4
2€ ~ 1€ 3=€<5

—1+ 4e — 262, ‘5‘5651.

(A.2)

Whene is small,C (e, 2, 2) scales a%e. This occurs
because the intersecting area in Fig. 10(a) is primarily
in the main diagonal strip for very smallvalues. The
area in the main diagonal strip is approximatélay.

From the above calculations, we see that the corre-
lation integral becomes increasingly more difficult to
compute analytically as increases. For example, for
T = 3, there exist 64 cases for which the distance from
T® (p) andT® (¢) are guaranteed to be less than
if |p—gq|< :—ée. Nonetheless, for smadl values, the
correlation integral can be approximated by the area
along the main diagonal, as shown in Fig. 11. This
area isfje — e forr = 3.

For higher embedding dimensions, it is necessary
to consider the probability fon events to occur. Ge-
ometrically this involves the intersection af cases.
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p

(d)
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P
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Fig. 10. Four different possibilities in the computation of the correlation integkal 2, 2) for the tent map: (a) & € < ?23 (b)

2 2 2 4 4
§§e<§,(c)§§e<gand(d)ggegl.

For example, whenn = 3 andt = 1, the cor-
relation integral is the probability thalp — ¢g| <
&IT(p) = T(@| < € and TP (p) — TP(g)| <

€. Nonetheless, whea is small, the correlation in-
tegral scales as(2/2"~D7) or 21-»—D7¢  This is
due to the geometrical observation that the appropriate
area equated to the correlation integral is essentially a
strip, whose horizontal width is equal tge2 20"~ D7),
along the diagonal of the unit square. The diagonal
strip is related to the window lengtlim;: — 1), be-
cause it represents the approximate probability that

»
»

Fig. 11. Areas contributing ta (e, 3,2) for ¢ <« 1 (shaded
regions). The diagonal area gives the main contribution to
C(e, 3, 2) which is first-order inc. Other small shaded regions
give a contribution which is on the order of.
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|Tm=D7(p)y — Tm=D7(4)| < €. Thus, we have

_C, 1)
2(m—1)r

2¢
2(m—1)r ~

for e « 1.
(A.3)

Cle,t,m)~
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